Monatshefte für Chemie 107, 1327-1333 (1976) © by Springer-Verlag 1976

Das Schwingungsspektrum von $Ba_5(ReO_6)_2$

Von

Enrique J. Baran

Cátedra de Química Inorgánica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentinien

Mit 2 Abbildungen

(Eingegangen am 15. März 1976)

The Vibrational Spectrum of Ba₅(ReO₆)₂

The infrared and laser-Raman spectra of crystalline $Ba_5(ReO_6)_2$ are reported and discussed. From the obtained spectroscopic data a calculation of force constants and mean amplitudes of vibration for the $ReO_6{}^{5-}$ ion has been carried out.

Mittels IR-Spektroskopie ist es uns vor einiger Zeit gelungen den Beweis zu erbringen, daß im Kristallgitter vom Bariumhexaoxorhenat(VII), $Ba_5(ReO_6)_2$, isolierte ReO_6 -Oktaeder vorliegen¹ (vgl. auch²).

Obwohl man auch einige andere Hexaoxorhenate(VII) schwingungsspektroskopisch untersucht hat^{3, 4}, ist noch in keinem Fall das vollständige Schwingungsspektrum (IR und Raman) eindeutig zugeordnet worden. Deswegen haben wir jetzt neuerdings das $Ba_5(ReO_6)_2$ einer vollständigen spektroskopischen Untersuchung unterworfen.

Zur Kristallstruktur von Ba₅(ReO₆)₂

 $Ba_5(ReO_6)_2$ ist wahrscheinlich mit $Ba_5(JO_6)_2$ isostrukturell (vgl. z. B. ^{5, 6}), und gehört zu einer Gruppe von Rheniumverbindungen des Typs $A_5(ReO_6)_2$ bzw. $A_4A'(ReO_6)_2$, dessen Struktur auf einer dichten Packung von AO_3 -Schichten basiert^{7, 8}. Im Falle von $Ba_5(ReO_6)_2$ benötigt man zum Aufbau der Elementarzelle 24 solcher BaO_3 -Schichten, obwohl sie auch durch eine Pseudo-8-Schichtenstruktur beschrieben werden kann. Dies bedeutet aber, daß die reelle Zelle eine Überstruktur dieser 8-Schichtenstruktur darstellt.

Die Re-Atome liegen im Zentrum von Sauerstoffoktaedern. Durch systematische Verteilung der restlichen, unbesetzten Oktaeder entsteht ein Gitter, in welchem die besetzten Polyeder unter sich keine Flächen teilen, so daß in diesen wirklich "isolierte" ReO_6 -Einheiten vorliegen⁷.

Ba₅(ReO₆)₂ kristallisiert im hexagonalen Kristallsystem mit a = 10,4 Å und c = 58,4 Å; die wahrscheinliche Raumgruppe für die kleinere Unterzelle ist P6₃mc (C⁴_{6v}, Nr. 186), und diese Elementarzelle enthält sechs Formeleinheiten^{7, 8}.

Das Schwingungsspektrum von Ba₅(ReO₆)₂

Die Schwingungen eines "freien" AB_6 -Oktaeders klassifizieren sich gemäß der Punktgruppe O_h wie folgt⁹:

$$\Gamma_{\mathrm{O_h}} = \mathrm{A_{1g}} + \mathrm{E_g} + 2 \ \mathrm{F_{1u}} + \mathrm{F_{2g}} + \mathrm{F_{2u}}$$

dabei sind die symmetrischen Valenzschwingungen $\nu_1(A_{1g})$ und $\nu_2(E_g)$ und die symmetrische Deformationsschwingung $\nu_5(F_{2g})$ nur Ramanaktiv, während die antisymmetrische Valenzschwingung $\nu_3(F_{1u})$ und die antisymmetrische Deformationsschwingung $\nu_4(F_{1u})$ nur IR-aktiv sind. Die andere Deformationsschwingung, $\nu_6(F_{2u})$, ist inaktiv.

In den Kristallgittern liegen aber gewöhnlich die Koordinationspolyeder einer gegebenen mehratomigen Gruppe mehr oder weniger gestört vor. Dies ist sicherlich auch der Fall für die ReO₆-Einheiten im Ba₅(ReO₆)₂-Gitter, obwohl in diesem Fall die Anwendung der "Site-Symmetrie"-Regeln^{10, 11} etwas schwierig ist, vor allem, weil die Raumgruppe der Überstrukturzelle nicht bekannt ist, und gerade diese die wirklichen Symmetrieeigenschaften des gesamten Gitters beschreibt. Analysiert man aber die Raumgruppe der Unterzelle (P6₃mc), so stellt sich heraus, daß die Rhenium-Atome Punktlagen der Symmetrie C_{3v}, C_s oder C₁ besetzen können¹², und alle diese Lagen führen zu einer Störung bzw. Erniedrigung der O_h-Symmetrie.

Diese Störung kann man auch spektroskopisch sehr deutlich erkennen, wie die bloße Betrachtung des auf Abb. 1 wiedergegebenen Ramanspektrums oder die des entsprechenden IR-Spektrums (Abb. 2) sofort zeigen. Auf dem Ramanspektrum erscheinen nämlich mehr als die drei erwarteten Linien, während im IR-Spektrum die zwei erwarteten F_{lu} -Schwingungen deutliche Aufspaltungsanzeichen aufweisen und außerdem noch einige weitere schwache Banden zu erkennen sind. Beide Spektren sind auch viel komplizierter als diejenigen einiger geordneter Perowskite, bei welchen die MO_6 -Gruppen auch im Gitter noch die O_h -Symmetrie bewahren. In diesen Fällen (z. B. bei den Verbindungen Ba₂CaTeO₆, Ba₂CaWO₆, etc.) zeigen die Spektren nur die drei bzw. zwei erwarteten Banden und diese liegen praktisch ungestört vor¹³.

Die Zuordnung des gesamten Schwingungsspektrums von Ba₅(ReO₆)₂

ist Tab. 1 zu entnehmen. Auch hieraus ist deutlich zu ersehen, daß einige im IR-Spektrum verbotene Schwingungen dennoch aktiv werden. Der umgekehrte Effekt (Aktivierung von verbotenen Raman-Schwingungen) ist nicht so deutlich zu erkennen; dies bedeutet, daß die

Abb. 1. Ramanspektrum von Ba₅(ReO₆)₂

Abb. 2. Infrarotspektrum von Ba₅(ReO₆)₂

Schwingungen, obwohl sie wahrscheinlich aus Symmetriegründen erlaubt sind, doch nicht genügend Intensität im Ramaneffekt erreichen.

Besonders interessant ist das Auftreten des intensiven 812/793-Raman-Doubletts. Diese Verdopplung der v_1 -Schwingung ist wahrscheinlich auf Korrelationsfeldeffekte zurückzuführen. Besonders ist in diesem Zusammenhang noch zu bemerken, daß beim wahrscheinlich isostrukturellen $Ba_5(JO_6)_2$ das Ramanspektrum auch ein intensives Dublett im Bereich der v₁-Schwingung aufweist¹⁴.

Die Zuordnung der v₃- bzw. v₄-Schwingung ist auch durch die Aufnahme von IR-Spektren zahlreicher anderer Hexaoxorhenate(VII)⁴ weitgehend gesichert. Auch die Zuordnung von v₁, v₂ und v₅ ist durch Lage und Intensität im Ramaneffekt eindeutig (vgl. auch ¹³). Die Zu-

Infrarot	Raman	Zuordnung	
812	812)		
722)	793∫ 680 (Sch)	v1(rig)	
$622 \\ 505$		$\nu_3(F_{1u})$	
	560 L	$v_{2}(\mathbf{E}_{\sigma})$	
465	535) 465)	· (III)	
440 360)	445}	ν ₅ (Γ2g)	
$\frac{340}{295}$	345 (Sch)	$\nu_4(F_{1u})$	
325) 305		$ u_6(F_{2u})$ (?)	
$\left. \begin{array}{c} 142\\ 120 \end{array} \right\}$		Gitterschw.	
91)			

Tabelle 1. Schwingungsspektrum von $Ba_5(ReO_6)_2$ (Bandenlage in cm⁻¹)

Sch: Schulter.

ordnung der schwachen Schulter bei 305 cm⁻¹ an die im isolierten Oktaeder verbotene ν_6 -Schwingung ist nicht sicher, obwohl man gewöhnlich annehmen kann, daß $\nu_6 = \nu_5 / \sqrt{2}$ ist (vgl. ¹⁵) und somit der Wert für diese Schwingung bei 318 cm⁻¹ liegen dürfte.

Die drei im IR-Spektrum beobachteten Gitterschwingungen wurden bereits in der früheren Untersuchung¹ gemessen.

Berechnung von Schwingungseigenschaften des ReO₆⁵⁻-Anions

An Hand der erhaltenen experimentellen Daten erschien es weiterhin wichtig, einige Schwingungseigenschaften des ReO_6^{5-} -Ions zu berechnen. Diesen Berechnungen wurden die auf Tabelle 2 angeführten Schwingungsfrequenzen zugrunde gelegt. Zur Berechnung der Kraftkonstanten wurden folgende Energie-Matrizen^{9, 16} benutzt:

 $\begin{array}{lll} {\rm A}_{1{\rm g}} & {\rm G}_{11} = \mu_0 & {\rm F}_{11} = f_r + 4f_{rr} + f_{rr}' \\ {\rm E}_{{\rm g}} & {\rm G}_{22} = \mu_0 & {\rm F}_{22} = f_r - 2f_{rr} + f_{rr}' \\ {\rm F}_{1{\rm u}} & {\rm G}_{33} = \mu_0 + 2\,\mu_{{\rm Re}} & {\rm F}_{33} = f_r - f_{rr} \\ {\rm G}_{34} = -4\,\mu_{{\rm Re}} & {\rm F}_{34} = 2\,f_{r\alpha} \\ {\rm G}_{44} = 2\,(\mu_0 + 4\,\mu_{{\rm Re}}) & {\rm F}_{44} = f_\alpha + 2\,f_{\alpha\alpha} \\ {\rm F}_{2{\rm g}} & {\rm G}_{55} = 4\,\mu_0 & {\rm F}_{55} = f_\alpha - 2\,f_{\alpha\alpha} \\ {\rm F}_{2{\rm u}} & {\rm G}_{66} = 2\,\mu_0 & {\rm F}_{66} = f_\alpha - 2\,f_{\alpha\alpha} \end{array}$

Tabelle 2. Grundschwingungen des ReO_6^{5-} -Ions (in cm⁻¹)

Zuordnung	
$v_1(A_{1g})$	
$v_2(\mathbf{E_g})$	
$v_3(\mathbf{F}_{1u})$	
$v_4(\mathbf{F_{1u}})$	
$v_5(F_{2g})$	
$v_6(F_{2u})$	

Tabelle 3. Krajtkonstanten des ReO₆⁵⁻-Ions (in mdyn/Å)

Die Kraftkonstanten für A_{1g} , E_g , F_{2g} und F_{2u} können direkt aus den gefundenen Werten für v_1 , v_2 , v_5 und v_6 berechnet werden. Für die Lösung des n = 2-Problems (F_{1u} -Schwingungen) wurde das von Fa $dini^{17-19}$ vorgeschlagene Kopplungsstufenverfahren herangezogen. Die erhaltenen Valenzkonstanten sind in Tabelle 3 zusammengestellt. Hierbei bezieht sich f_r auf die Re—O-Bindung und f_{α} auf den OReO-Winkel. Konstanten mit rr und $\alpha\alpha$ sind Wechselwirkungskonstanten (f_{rr} ist die Bindungs/Bindungs-Wechselwirkungskonstante unter 90° und f'_{rr} unter 180°; $f_{\alpha\alpha}$ bezieht sich auf Wechselwirkungen der Winkel in gleicher Ebene mit einem gemeinsamen Schenkel, während $f'_{\alpha\alpha}$ sich auf Winkel mit gemeinsamem Schenkel, aber auf senkrecht stehenden Ebenen bezieht) und $f_{r\alpha}$ ist eine Bindungs/Winkel-Wechselwirkung.

Besonders hervorzuheben ist die interessante Tatsache, daß f_{rr} und f'_{rr} praktisch vergleichbare Größen besitzen. Dies wurde bereits früher von uns bei Durchführung einiger Näherungsrechnungen, bei verwandten Species, angenommen²⁰. Aus den für f_r erhaltenen Wert kann man weiterhin auch, nach der Methode von Siebert²¹, den Bindungsgrad für die Re—O-Bindung leicht abschätzen. Der berechnete Wert von 1,2 spricht für eine ziemlich schwache Metall—Sauerstoff-Bindung.

Schließlich haben wir auch noch, an Hand der "Methode der charakteristischen Schwingungen"^{22, 23}, welche, wie wir kürzlich gezeigt haben²⁴, für Species mit oktaedrischer Symmetrie ausgezeichnete Ergebnisse liefert, die mittleren Schwingungsamplituden für das ReO_6^{5-} -Anion berechnet. Die Ergebnisse, bei verschiedenen Temperaturen, sind Tabelle 4 zu entnehmen.

Temp., K	u _{Re-O}	<i>u</i> ₀₀ (kurz)	u_{00} (lang)
0	0.0427	0.067	0.058
100	0,0427	0,068	0,058
200	0,0432	0,071	0,058
300	0,0449	0,077	0,060
400	0,0474	0,084	0,064
500	0,0504	0,091	0,068
600	0,0535	0,098	0,072
700	0,0566	0,104	0,076
800	0,0597	0,111	0,080

Tabelle 4. Mittlere Schwingungsamplituden des ReO₆⁵⁻-Ions (in Å)

Ein Vergleich der Kraftkonstanten, des Bindungsgrades und der mittleren Schwingungsamplitude der Re—O-Bindung mit entsprechenden Werten anderer MO_6 -Verbindungen zeigt deutlich, daß für ReO_6^{5-} die Stärke der Metall—Sauerstoff-Bindung zwischen WO_6^{6-} und TeO_6^{6-} liegt²⁵. Weiterhin ist diese Bindung, obwohl sie anscheinend noch einen verschwindend kleinen π -Anteil besitzt, die schwächste bisher bekannte Re—O-Bindung; dies geht einerseits aus dem niedrigen Wert der entsprechenden Kraftkonstante und des Bindungsgrades (vgl. z. B. auch ¹) und anderseits auch aus dem ziemlich hohen Amplitudenwert (vgl. z. B. mit den Werten von ReO_4^- , ReO_3S^- und ReO_3Cl , die bei 0,035—0,036 Å liegen²⁶), deutlich hervor.

Experimenteller Teil

 $Ba_5(ReO_6)_2$ wurde durch Festkörperreaktion geeigneter $Ba(ReO_4)_2/BaCO_3$ -Gemische bei 850 °C dargestellt^{1, 5, 6}. Die IR-Spektren wurden an CsJ-Preßlingen des Festkörpers an einem Perkin Elmer 180-Spektralphotometer gemessen und die Raman-Spektren mit einem Gerät der Fa. Coderg (Typ PHO), unter Anwendung der 6471 Å-Linie eines Kr-Lasers (Fa. Spectra-Physics) aufgenommen.

Die Berechnungen wurden an einem IBM 360-Computer (CESPI-UNLP) durchgeführt.

Diese Arbeit wurde mit Unterstützung des "Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina" durchgeführt.

Literatur

- ¹ E. J. Baran und A. Müller, Z. anorg. allg. Chem. 368, 168 (1969).
- ² F. A. Cotton und G. Wilkinson, Advanced Inorganic Chemistry, 3. Aufl. New York: Interscience. 1972.
- ³ W. P. Griffith, J. chem. Soc. A 1969, 211.
- ⁴ J. Hauck, Z. Naturforsch. 25 b, 468 (1970).
- ⁵ R. Scholder, Angew. Chem. 70, 583 (1958).
- ⁶ R. Scholder, K. L. Huppert und P. P. Pfeiffer, Angew. Chem. 75, 375 (1963).
- ⁷ J. M. Longo, L. Katz und R. Ward, Inorg. Chem. 4, 235 (1965).
- ⁸ W. Sievert, Dissertation. Universität Dortmund. 1974.
- ⁹ J. R. Ferraro und J. S. Ziomek, Introductory Group Theory and its Applications to Molecular Structure. New York: Plenum Press. 1969.
- ¹⁰ R. S. Halford, J. Chem. Phys. 14, 8 (1946).
- ¹¹ E.J. Baran, A. Müller und R.O. Carter, Structure and Bonding 26, 81 (1976).
- ¹² W. G. Fateley, Appl. Spectr. 27, 395 (1973).
- ¹³ A. F. Corsmit, H. E. Hoefdraad und G. Blasse, J. inorg. nucl. Chem. 34, 3401 (1972).
- ¹⁴ H. Siebert und G. Wieghardt, Z. Naturforsch. 27 b, 1299 (1972).
- ¹⁵ P. Labonville, J. R. Ferraro, M. C. Wall und L. J. Basile, Coord. Chem. Rev. 7, 257 (1972).
- ¹⁶ J. Hauck und A. Fadini, Z. Naturforsch. 25 b, 422 (1970).
- ¹⁷ A. Fadini, Z. Angew. Math. Mech. 44, 506 (1964).
- ¹⁸ W. Sawodny, A. Fadini und K. Ballein, Spectrochim. Acta 21, 995 (1965).
- ¹⁹ A. Fadini, Dissertation, Techn. Hochsch. Stuttgart, 1967.
- ²⁰ A. Müller, E. J. Baran und J. Hauck, Spectrochim. Acta **31** A, 801 (1975).
- ²¹ H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie. Berlin-Heidelberg-New York: Springer. 1966.
- ²² A. Müller, C. J. Peacock, H. Schulze und U. Heidborn, J. Mol. Struct. 3, 252 (1969).
- ²³ E. J. Baran, Anales Asoc. Quím. Argent. 61, 141 (1973).
- ²⁴ E. J. Baran, Mh. Chem. 105, 362 (1974).
- ²⁵ E. J. Baran, Mh. Chem. 107, 241 (1976).
- ²⁶ A. Müller, E. J. Baran und K. H. Schmidt, Characteristic Mean Amplitudes of Vibration, in: Molecular Structures and Vibrations (S. J. Cyvin, Hrsg.). Amsterdam: Elsevier. 1972.

Korrespondenz und Sonderdrucke: Prof. Dr. E. J. Baran Facultad de Ciencias Exactas Calle 47 esq. 115 1900 La Plata Argentinien